IDENTITAS PERKALIAN DAN PENJUMLAHAN / SELISIH SINUS DAN KOSINUS

Rumus Jumlah dan Selisih Fungsi Trigonometri Sinus dan Cosinus
Oleh : Siti Lutfatul Khasanah
Kelas : XI IPA 2
absen : 32

1.Perkalian Sinus dan Kosinus

Sebelumnya bacalah terlebih dahulu mengenai Trigonometri untuk mempelajari rumus-rumus jumlah dan selisih dua sudut, yaitu:

cos (α + β) = cos α cos β – sin α sin β
cos (α – β) = cos α cos β + sin α sin β
sin (α + β) = sin α cos β + cos α sin β
sin (α – β) = sin α cos β – cos α sin β

Sekarang, Anda akan mempelajari perkalian sinus dan kosinus. Untuk itu, pelajari uraian berikut.

cos (α + β) = cos α cos β – sin α sin β .... (1)
cos (α – β) = cos α cos β + sin α sin β .... (2)

Dengan menjumlahkan (1) dan (2), Anda akan memperoleh

cos (α + β) + cos (α – β) = 2 cos α cos β

Jadi, perkalian cosinus dan cosinus adalah :

perkalian cosinus dan cosinus
cos (α + β) = cos α cos β – sin α sin β .... (3)
cos (α – β) = cos α cos β + sin α sin β .... (4)

Dengan mengurangkan (4) terhadap (3), diperoleh :
cos(α + β) – cos (α – β) = –2 sin α sin β

Jadi, perkalian sinus dan sinus adalah :

2.perkalian sinus dan sinus

sin (α + β) = sin α cos β + cos α sin β .... (5)
sin (α – β) = sin α cos β – cos α sin β .... (6)

Dengan menjumlahkan (5) dan (6), diperoleh :

sin (α + β) + sin (α – β) = 2 sin α cos β

Jadi, perkalian sinus dan cosinus adalah :

perkalian sinus dan cosinus

sin (α + β) = sin α cos β + cos α sin β .... (7)
sin (α – β) = sin α cos β – cos α sin β .... (8)

Dengan mengurangkan (8) terhadap (7), diperoleh

sin(α + β) – sin (α – β) = 2 cos α sin β

Jadi, perkalian sinus dan cosinus :

Contoh Soal 1

Hitunglah:

a. cos 75° cos 15° 
b. –2 sin 15°sin 75°

Pembahasan 1

a. cos 75° cos 15° = 1/2 (cos (75 + 15)° + cos (75 – 15)°)
= 1/2 (cos 90 + cos 60)°
= 1/2 (0 + 1/2) 
= 1/4
b. –2 sin 15° sin 75° = cos (15 + 75)° – cos (15 – 7 5)°
= cos 90° – cos (–60)°
= cos 90° – cos 60°
= 0 - 1/2)  
= - 1/2


Sekian, semoga bermanfaat
Wassalamu'alaikum warahmatullahi wa barakatuh